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Memkind 
introduction
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PMem why volatile in App Direct?
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Use large capacity

Fine-grained control of memory placement

Unified memory management for DRAM and PMem provided by memkind
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Memkind overview
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Open-Source allocator, written in C - available on Linux

Malloc-style API
void *memkind_malloc(memkind_t kind, size_t size);
void memkind_free(memkind_t kind, void* ptr);
…

Memory (kind) detection mechanism
memkind_free(NULL, ptr)
memkind_t kind = memkind_detect_kind(ptr)
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PMem in memkind
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2 operation modes

• Kernel requirements >= 4.2
• Allocation based on a file - fallocate 
• NUMA locality - fine-grain control
• Kind created by user
• Pool size management

FS-DAX
• Kernel requirements >= 5.1
• Allocation based on memory binding - mbind
• NUMA locality - limited control
• Kind created automatically
• COW support

KMEM-DAX
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About 
Hazelcast
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Distributed in-memory computing 
platform

About Hazelcast

Typical use-cases:

• Caching layer
• Web session
• Real-time analytics (Hazelcast Jet)
• Fraud detection
• Many more
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K/V store, streaming, SQL,
Entry Processors, …

Big in-memory state

Written in Java

Infrastructure software
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Big heaps and the JVM
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Java heap is garbage collected

GC algorithms
• Traditional GCs: can’t cope with big heaps or
• Concurrent GCs: manage big heaps at the cost of CPU and memory overhead

Hazelcast’s solution: High-Density Memory Store



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Data outside of the Java Heap
Hazelcast HD Memory Store
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Not subject of garbage collection

GC pauses don’t scale with the data

No resource overhead (CPU, RAM)

Memory is managed manually

Persistent memory is a good fit

More memory at a lower cost
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Persistent memory in Hazelcast
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Used in Volatile App-Direct mode (Intel Optane PMem)

Linux-only support – native code bundled in the jar

• Allocation via libvmem

• Multi-socket support via LVM only

• NUMA-locality problems

Hazelcast 4.0
• Allocation via Memkind

• Native support to multi-socket machines

• Optional NUMA-awareness

• FS-DAX and KMEM-DAX modes supported

Hazelcast 4.1
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Integration with Memkind
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No uncommitting: pages are freed only at exit
• MEMKIND_HOG_MEMORY – no “hole punching” by memkind_free()

Easy integration
• Hazelcast: malloc-like internal interface
• Memkind: malloc-like public interface

Hazelcast uses Memkind as page allocator with JNI calls
• The pages are thread-cached and split in the Java space
• Amortized JNI overhead cost

Convenient API for supporting various types of memory
• Whatever Memkind supports can be easily supported by Hazelcast
• PMem in FS-DAX or KMEM-DAX modes
• Potentially different NUMA policies
• DRAM with huge pages
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Unified heap in FS-DAX mode
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Challenge 1: Unifying the PMem heaps
• Each PMem mount point is a separate heap
• Having multiple heaps has to be transparent to the allocators
• Allocation strategy: which heap to allocate from?

• Round-robin: balanced NUMA-Node utilization
• NUMA-aware: all PMem accesses are NUMA-local

Challenge 2: Each block to be freed in its originating heap
• Tracking each allocation would be a massive overhead
• Memkind’s kind detection feature to the rescue
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Hazelcast 
benchmarks
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Naming example:
AFFNUMA-OPTANE-NUMA-10K-100G-1

• AFFNUMA/AFFUNSET: whether the worker 

threads are NUMA-bound or not

• DRAM/OPTANE: HD memory store is backed by 

DRAM or Optane

• OPTANE-NUMA: Optane with NUMA-aware 

allocation policy

• 10K: 10KB fixed entry size

• 100G: primary data per member

• 1: iteration of the test, always 1

3 servers on 3 dedicated machines

Caching benchmark
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All on the same low-latency, 40Gbit/s network

10KB entry size

100GB primary + 100 GB backup per server

PMem in FS-DAX interleaved mode

Medium and high load

Load from 20 clients sharing 2 machines

50%-50% get-put
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Caching benchmark – medium load
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100%

99%

94%

89%
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Caching benchmark – high load
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100%

94%

81%

62%
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Conclusion: NUMA-awareness matters
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NUMA-local PMem accesses may increase the performance by a lot

The bigger the entry size and the load, the more significant the impact
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Conclusion: PMem in distributed caching
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Networking can compensate for PMem’s performance handicap
• Serialization copying between buffers, inter-thread communication 

Traditional caching turned out to be a good use case
• PMem used as a storage layer
• Read-heavy workload
• No or small performance penalty

Load-intensive workloads still handicapped
• Full scans
• Hazelcast: Entry Processors

• Data locality - processing entries selected by a predicate on the server
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Summary
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Shown PMem can be in parity with DRAM in a distributed
environment

Shown how easy it is to integrate with Memkind

Blog post: pmem.io blog and Hazelcast blog

Shown how Hazelcast brings PMem into the JVM 
ecosystem

Hazelcast manual: Using persistent memory

https://pmem.io/2021/02/11/hazelcast_memkind.html
https://hazelcast.com/blog/using-memkind-in-hazelcast/
https://docs.hazelcast.com/imdg/4.2/storage/high-density-memory.html#using-persistent-memory
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