
SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Hazelcast & Memkind
Zoltán Baranyi
Senior Software Engineer

Hazelcast

Michal Biesek

Software Engineer

Intel



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Agenda

02 About Hazelcast

03 Huge heaps in the JVM

04 Using PMem for backing huge heaps

05 Integration with Memkind

06 Hazelcast benchmarks

01 Memkind introduction

2

07 Conclusions



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Memkind 
introduction



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

PMem why volatile in App Direct?

4

Use large capacity

Fine-grained control of memory placement

Unified memory management for DRAM and PMem provided by memkind



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Memkind overview

5

Open-Source allocator, written in C - available on Linux

Malloc-style API
void *memkind_malloc(memkind_t kind, size_t size);
void memkind_free(memkind_t kind, void* ptr);
…

Memory (kind) detection mechanism
memkind_free(NULL, ptr)
memkind_t kind = memkind_detect_kind(ptr)



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

PMem in memkind

6

2 operation modes

• Kernel requirements >= 4.2
• Allocation based on a file - fallocate 
• NUMA locality - fine-grain control
• Kind created by user
• Pool size management

FS-DAX
• Kernel requirements >= 5.1
• Allocation based on memory binding - mbind
• NUMA locality - limited control
• Kind created automatically
• COW support

KMEM-DAX



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

About 
Hazelcast



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Distributed in-memory computing 
platform

About Hazelcast

Typical use-cases:

• Caching layer
• Web session
• Real-time analytics (Hazelcast Jet)
• Fraud detection
• Many more

8

K/V store, streaming, SQL,
Entry Processors, …

Big in-memory state

Written in Java

Infrastructure software



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Big heaps and the JVM

9

Java heap is garbage collected

GC algorithms
• Traditional GCs: can’t cope with big heaps or
• Concurrent GCs: manage big heaps at the cost of CPU and memory overhead

Hazelcast’s solution: High-Density Memory Store



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Data outside of the Java Heap
Hazelcast HD Memory Store

10

Not subject of garbage collection

GC pauses don’t scale with the data

No resource overhead (CPU, RAM)

Memory is managed manually

Persistent memory is a good fit

More memory at a lower cost



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Persistent memory in Hazelcast

11

Used in Volatile App-Direct mode (Intel Optane PMem)

Linux-only support – native code bundled in the jar

• Allocation via libvmem

• Multi-socket support via LVM only

• NUMA-locality problems

Hazelcast 4.0
• Allocation via Memkind

• Native support to multi-socket machines

• Optional NUMA-awareness

• FS-DAX and KMEM-DAX modes supported

Hazelcast 4.1



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Integration with Memkind

12

No uncommitting: pages are freed only at exit
• MEMKIND_HOG_MEMORY – no “hole punching” by memkind_free()

Easy integration
• Hazelcast: malloc-like internal interface
• Memkind: malloc-like public interface

Hazelcast uses Memkind as page allocator with JNI calls
• The pages are thread-cached and split in the Java space
• Amortized JNI overhead cost

Convenient API for supporting various types of memory
• Whatever Memkind supports can be easily supported by Hazelcast
• PMem in FS-DAX or KMEM-DAX modes
• Potentially different NUMA policies
• DRAM with huge pages



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Unified heap in FS-DAX mode

13

Challenge 1: Unifying the PMem heaps
• Each PMem mount point is a separate heap
• Having multiple heaps has to be transparent to the allocators
• Allocation strategy: which heap to allocate from?

• Round-robin: balanced NUMA-Node utilization
• NUMA-aware: all PMem accesses are NUMA-local

Challenge 2: Each block to be freed in its originating heap
• Tracking each allocation would be a massive overhead
• Memkind’s kind detection feature to the rescue



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Hazelcast 
benchmarks



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Naming example:
AFFNUMA-OPTANE-NUMA-10K-100G-1

• AFFNUMA/AFFUNSET: whether the worker 

threads are NUMA-bound or not

• DRAM/OPTANE: HD memory store is backed by 

DRAM or Optane

• OPTANE-NUMA: Optane with NUMA-aware 

allocation policy

• 10K: 10KB fixed entry size

• 100G: primary data per member

• 1: iteration of the test, always 1

3 servers on 3 dedicated machines

Caching benchmark

15

All on the same low-latency, 40Gbit/s network

10KB entry size

100GB primary + 100 GB backup per server

PMem in FS-DAX interleaved mode

Medium and high load

Load from 20 clients sharing 2 machines

50%-50% get-put



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Caching benchmark – medium load

16

100%

99%

94%

89%



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Caching benchmark – high load

17

100%

94%

81%

62%



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Conclusion: NUMA-awareness matters

18

NUMA-local PMem accesses may increase the performance by a lot

The bigger the entry size and the load, the more significant the impact



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Conclusion: PMem in distributed caching

19

Networking can compensate for PMem’s performance handicap
• Serialization copying between buffers, inter-thread communication 

Traditional caching turned out to be a good use case
• PMem used as a storage layer
• Read-heavy workload
• No or small performance penalty

Load-intensive workloads still handicapped
• Full scans
• Hazelcast: Entry Processors

• Data locality - processing entries selected by a predicate on the server



SPDK, PMDK, Intel® Performance Analyzers Virtual Forum

Summary

20

Shown PMem can be in parity with DRAM in a distributed
environment

Shown how easy it is to integrate with Memkind

Blog post: pmem.io blog and Hazelcast blog

Shown how Hazelcast brings PMem into the JVM 
ecosystem

Hazelcast manual: Using persistent memory

https://pmem.io/2021/02/11/hazelcast_memkind.html
https://hazelcast.com/blog/using-memkind-in-hazelcast/
https://docs.hazelcast.com/imdg/4.2/storage/high-density-memory.html#using-persistent-memory


SPDK, PMDK, Intel® Performance 

Analyzers
Virtual Forum


